4.4.5. 设计说明

4.4.5.1. 源码说明

源代码位于 bsp/artinchip/

  • bsp/artinchip/drv/gpt/drv_gpt.c,GPTimer Driver 层实现

  • bsp/artinchip/include/drv/drv_gptimer.h,GPTimer Driver 层接口

  • bsp/artinchip/hal/gpt/hal_gpt.c,GTPimer 模块的 HAL 层实现

  • bsp/artinchip/include/hal/hal_gpt.h,GTPimer 模块的 HAL 层接口头文件

4.4.5.2. 模块架构

GPTimer 驱动 Driver 层采用 RT-Thread 的 hwtimer 设备驱动框架。HAL 层也可以支持 Baremetal 方式或配合自定义的设备驱动框架进行使用。

../../../_images/sw_system13.png

图 4.25 HRTimer驱动的软件架构图

4.4.5.3. 关键流程设计

4.4.5.3.1. 初始化流程

GPTimer 驱动的初始化接口通过 INIT_DEVICE_EXPORT(drv_hwtimer_init) 完成,主要是通过调用 hwtimer 子系统的接口 rt_device_hwtimer_register() 注册一个 hwtimer 设备。

GPTimer 控制器的配置过程,主要步骤有:

  1. 初始化 GPTimer 模块的 clk

  2. 设置 GPTimer 的cnt值

  3. 设置 GPTimer 的工作模式

  4. 使能 GPTimer 的中断

  5. 启动 GPTimer 计数

4.4.5.4. 数据结构设计

4.4.5.4.1. struct gptimer_info

属于 Driver 层接口,记录一个 GPTimer 设备的配置信息:

struct gptimer_info {
    char name[12];
    u32 id;
    struct irq_flag gptirq_flag;
    rt_hwtimer_t gptimer;
};

4.4.5.4.2. struct gptimer_para

属于 Driver 层接口,用于设置 GPTimer 的工作模式:

struct gptimer_match_out
{
    u8 is_en;
    enum gpt_out_init out_init;
    enum gpt_cmp_out cmpa_out;
    enum gpt_cmp_out cmpb_out;
};
struct gptimer_match
{
    enum gpt_cmp_act cmpa_act;
    enum gpt_cmp_act cmpb_act;
    struct gptimer_match_out outval[GPT_OUT_NUMS];
};
struct gptimer_para
{
    enum gptimer_mode gptimer_mode;
    enum gpt_trg_mode gptimer_trgmode;
    struct gptimer_match matchval;
};

4.4.5.5. Driver 层接口设计

以下接口是 hwtimer 设备驱动框架的标准接口。

struct rt_hwtimer_ops
{
    void (*init)(struct rt_hwtimer_device *timer, rt_uint32_t state);
    #ifdef AIC_GPTIMER_DRV
    rt_err_t (*start)(struct rt_hwtimer_device *timer, rt_uint32_t cnt, rt_hwtimer_mode_t mode, void *args);
    #else
    rt_err_t (*start)(struct rt_hwtimer_device *timer, rt_uint32_t cnt, rt_hwtimer_mode_t mode);
    #endif
    void (*stop)(struct rt_hwtimer_device *timer);
    rt_uint32_t (*count_get)(struct rt_hwtimer_device *timer);
    rt_err_t (*control)(struct rt_hwtimer_device *timer, rt_uint32_t cmd, void *args);
};

为了拓展 GPTimer 的功能,(*start) 接口中新增了 args,用于设置 GPTimer 的工作模式。

4.4.5.5.1. drv_gptimer_init

函数原型

static void drv_gptimer_init(rt_hwtimer_t *timer, rt_uint32_t state)

功能说明

初始化配置一路 Timer

参数定义

timer - 指向 rt_hwtimer_t 设备的指针
state - 1,表示打开;0,表示关闭

返回值

注意事项

4.4.5.5.2. drv_hrtimer_start

函数原型

static rt_err_t drv_gptimer_start(rt_hwtimer_t *timer, rt_uint32_t cnt, rt_hwtimer_mode_t mode, void *args)

功能说明

启动 Timer

参数定义

timer - 指向 rt_hwtimer_t 设备的指针
cnt - Timer的超时计数,单位是:1/Freq秒
mode - Oneshot、或Period类型
args - 指向 GPtimer 工作模式参数指针

返回值

0,成功;<0,失败

注意事项

输出模式下 CMPA 值默认为 cnt 值的四分之一,CMPB 值默认为 cnt 值的二分之一

4.4.5.5.3. drv_hrtimer_stop

函数原型

static void drv_gptimer_stop(rt_hwtimer_t *timer)

功能说明

停止 Timer

参数定义

timer - 指向 rt_hwtimer_t 设备的指针

返回值

注意事项

4.4.5.5.4. drv_hrtimer_ctrl

函数原型

static rt_err_t drv_gptimer_ctrl(rt_hwtimer_t *timer, rt_uint32_t cmd, void *args)

功能说明

GPTimer 驱动的 ioctl 接口

参数定义

timer - 指向 rt_hwtimer_t 设备的指针
cmd - ioctl 命令码
args - ioctl 命令相应的参数

返回值

0,成功;<0,失败

注意事项

目前仅支持设置 Timer 的 Freq 值

4.4.5.6. HAL 层接口设计

HAL 层的函数接口声明存放在 hal_gpt.h 中,主要接口有:

u32 hal_gpt_int_stat(u32 i);
void hal_gpt_int_clr(u32 i, u32 mask);
void hal_gpt_clk_div_set(u32 i, u32 div);
void hal_gpt_ctl_set(u32 i, u32 trg_db, enum gpt_trg_mode trg_mode, enum gpt_run_mode run_mode);
void hal_gpt_en(u32 i, u32 enable);
void hal_gpt_clr(u32 i);
void hal_gpt_irq_en(u32 i, enum gpt_irq_mode irq_mode, u32 enable);
void hal_gpt_irq_disable(u32 i);
void hal_gpt_set_max(u32 i, u32 val);
void hal_gpt_out_init(u32 i, u32 out_num, struct gptimer_match cfg, u32 cmpa_val, u32 cmpb_val);
void hal_gpt_out_en(u32 i, u32 out_num, u32 enable);

4.4.5.7. Demo

本 Demo 是 test_gptimer 的部分源码(bsp/examples/test-gptimer/test_gptimer.c):

struct test_gptimer_para {
    rt_hwtimerval_t tm;
    struct gptimer_para gpt_para;
};

struct gptimer_match_out g_outval[GPT_OUT_NUMS] = {
    {1, OUT_INIT_LOW, CMP_OUT_HIGH, CMP_OUT_LOW},
    {1, OUT_INIT_HIGH, CMP_OUT_LOW, CMP_OUT_HIGH},
    {0, OUT_INIT_LOW, CMP_OUT_HIGH, CMP_OUT_LOW},
    {0, OUT_INIT_LOW, CMP_OUT_HIGH, CMP_OUT_LOW},
};

enum gpt_cmp_act g_cmpa_act = GPTIMER_CNT_CONTINUE;
enum gpt_cmp_act g_cmpb_act = GPTIMER_CNT_CONTINUE;

/* Timer timeout callback function */
static rt_err_t gptimer_cb(rt_device_t dev, rt_size_t size)
{
    struct gptimer_info *info = (struct gptimer_info *)dev->user_data;

#ifdef ULOG_USING_ISR_LOG
    if (g_debug)
        printf("%d/%d gptimer%d timeout callback! Elapsed %ld us\n",
               g_loop_cnt, g_loop_max,
               info->id, aic_timer_get_us() - g_start_us);
#endif

    g_start_us = aic_timer_get_us();
    g_loop_cnt++;
    if ((g_loop_max > 1) && (g_loop_cnt > g_loop_max))
        rt_device_control(g_gptimer_dev[info->id], HWTIMER_CTRL_STOP, NULL);

    return RT_EOK;
}

static void cmd_test_gptimer(int argc, char *argv[])
{
    rt_err_t ret = RT_EOK;
    u32 c, ch = 0;
    struct test_gptimer_para para = {0};
    rt_hwtimer_mode_t mode = HWTIMER_MODE_ONESHOT;
    enum gptimer_mode gpt_mode = GPTIMER_MODE_COUNT;
    enum gpt_trg_mode trg_mode = GPT_TRG_MODE_AUTO;
    u32 freq= 1000000;

    optind = 0;
    g_debug = 0;
    while ((c = getopt_long(argc, argv, sopts, lopts, NULL)) != -1) {
        switch (c) {
        case 'm':
            if (strncasecmp("period", optarg, strlen(optarg)) == 0)
                mode = HWTIMER_MODE_PERIOD;
            continue;

        case 'c':
            ch = atoi(optarg);
            if (ch > TIMER_NUM) {
                pr_err("Channel number %s is invalid\n", optarg);
                return;
            }
            continue;

        case 's':
            para.tm.sec = atoi(optarg);
            continue;

        case 'u':
            para.tm.usec = atoi(optarg);
            continue;

        case 'd':
            g_debug = 1;
            continue;

        case 'g':
            if (strncasecmp("count", optarg, strlen(optarg)) == 0)
                gpt_mode = GPTIMER_MODE_COUNT;
            else if (strncasecmp("match", optarg, strlen(optarg)) == 0)
                gpt_mode = GPTIMER_MODE_MATCH;
            continue;

        case 'a':
            if (strncasecmp("auto", optarg, strlen(optarg)) == 0)
                trg_mode = GPT_TRG_MODE_AUTO;
            else if (strncasecmp("rsi", optarg, strlen(optarg)) == 0)
                trg_mode = GPT_TRG_MODE_RSI;
            else if (strncasecmp("fall", optarg, strlen(optarg)) == 0)
                trg_mode = GPT_TRG_MODE_FALL;
            else if (strncasecmp("bil", optarg, strlen(optarg)) == 0)
                trg_mode = GPT_TRG_MODE_BILATERAL;
            continue;

        case 'f':
            freq = atoi(optarg);
            continue;

        case 'h':
            usage(argv[0]);
            return;

        default:
            pr_err("Invalid argument\n");
            usage(argv[0]);
            return;
        }
    }

    if ((para.tm.sec == 0) && (para.tm.usec == 0)) {
        pr_err("Invalid argument\n");
        usage(argv[0]);
        return;
    }

    if (!g_gptimer_dev[ch]) {
        char name[10] = "";

        snprintf(name, 10, "gptimer%d", ch);

        /* find timer device */
        g_gptimer_dev[ch] = rt_device_find(name);
        if (g_gptimer_dev[ch] == RT_NULL) {
            pr_err("Can't find %s device!\n", name);
            return;
        }

        /* Open the device in read-write mode */
        ret = rt_device_open(g_gptimer_dev[ch], RT_DEVICE_OFLAG_RDWR);
        if (ret != RT_EOK) {
            pr_err("Failed to open %s device!\n", name);
            return;
        }
    }

    para.gpt_para.gptimer_mode = gpt_mode;
    para.gpt_para.gptimer_trgmode = trg_mode;

    if (gpt_mode == GPTIMER_MODE_MATCH) {
        para.gpt_para.matchval.cmpa_act = g_cmpa_act;
        para.gpt_para.matchval.cmpb_act = g_cmpb_act;
        memcpy(&para.gpt_para.matchval.outval[0], g_outval, sizeof(struct gptimer_match_out) * 4);
    }

    /* set timeout callback function */
    rt_device_set_rx_indicate(g_gptimer_dev[ch], gptimer_cb);

    /* set the timer mode, oneshot or period */
    ret = rt_device_control(g_gptimer_dev[ch], HWTIMER_CTRL_MODE_SET, &mode);
    if (ret != RT_EOK) {
        pr_err("Failed to set mode! ret is %d\n", ret);
        return;
    }

    /* set the timer frequency to freqHz */
    ret = rt_device_control(g_gptimer_dev[ch], HWTIMER_CTRL_FREQ_SET, &freq);
    if (ret != RT_EOK) {
        pr_err("Failed to set the freq! ret is %d\n", ret);
        return;
    }

    printf("gptimer%d: Create a timer of %d.%06d sec, %s mode\n",
           ch, (u32)para.tm.sec, (u32)para.tm.usec,
           mode == HWTIMER_MODE_ONESHOT ? "Oneshot" : "Period");
    if (mode != HWTIMER_MODE_ONESHOT) {
        g_loop_max = GPTIMER_MAX_ELAPSE / (para.tm.sec * USEC_PER_SEC + para.tm.usec);
        printf("\tWill loop %d times\n", g_loop_max);
    }

    g_loop_cnt = 0;
    g_start_us = aic_timer_get_us();
    if (!rt_device_write(g_gptimer_dev[ch], 0, &para, sizeof(struct test_gptimer_para))) {
        pr_err("set timeout value failed\n");
        return;
    }

    // rt_device_close(g_gptimer_dev[ch]);
}
MSH_CMD_EXPORT_ALIAS(cmd_test_gptimer, test_gptimer, test gptimer);